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Problem Studied

In this project, object-sharing schemes for both real-time and non-real-time concurrent systems have
been investigated. A particular focus has been uniprocessor and shared-memory multiprocessor sys-
tems with processors that are multiprogrammed. In multiprogrammed systems, several processes may
execute on the same processor. Processes on the same processor are scheduled for execution either
by priority or by allocating a scheduling quantum. One of the main reasons for adopting a multipro-
grammed execution model is that it enables problems to be solved without static constraints on the
number of processes that may be employed. One price to be paid for this flexibility is having to deal
with frequent process delays due to preemptions.

~ Much of the work in this project has been concerned with lock-free and wait-free shared object
implementations. As explained in the original proposal and in previous interim reports, such imple-
mentations are not lock-based, and therefore are immune to performance problems associated with
process preemptions in multiprogrammed systems. Most of the research conducted in this project has
focused on two main goals: (i) to develop efficient algorithmic techniques for implementing concurrent
objects, and (ii) to determine how to account for object-sharing overheads that arise when using such
techniques in real-time schedulability tests.

Summary of Results

In most conventional wait-free and lock-free shared object implementations, performance does not scale
well with an increase in either the number of processes sharing the object, or the size of the object.
To deal with the former problem, we developed object implementations that incorporate lock-based
synchronization techniques to limit the number of processes that can concurrently access an object [1].
Performance studies conducted by us have shown that, in multiprogrammed systems, the use of such
techniques results in performance that is better than that of pure wait-free objects. To deal with the
problem of implementing large objects, we developed wait-free and lock-free object constructions in
which the state of the object is fragmented into smaller pieces that can be updated and managed more
efficiently [15]. Performance studies conducted by us on a KSR-1 multiprocessor have shown that, for
many common objects, these implementations perform significantly better than previous ones.

Our work on real-time object sharing has focused both on scheduling conditions for real-time tasks
that share objects, and on algorithms for implementing such objects. For real-time applications on
uniprocessors, we have shown through work on task scheduling that lock-free objects often outperform
conventional lock-based schemes by a substantial margin [2,5,11,16]. The good performance of lock-
free objects in this context is primarily due to the fact that they avoid priority inversions with no kernel
support for object sharing (in contrast to lock-based schemes) and with low algorithmic overhead (for
most common objects). We have validated these claims both formally, based on scheduling models,
and experimentally, based on research involving a desktop v1deoconferencmg system

We have also shown that it is possible to optimize wait-free algorithms in real-time multiproces-
sor systems by exploiting the inherent synchrony that exists in such systems [5,7,8,10,13]. We have
evaluated the performance of these optimized wait-free implementations by conducting a variety of
simulation experiments and by performing stress tests on a four-processor SGI Origin. These exper-
iments indicate that wait-free objects implemented using the proposed techniques outperform other
object-sharing schemes by a wide margin and lead to better schedulability in real-time systems.

We have also initiated new work on memory-resident real-time databases (RTDBs) [3,4,9,14].
RTDBs differ from conventional database systems in that transactions can have soft, firm, or hard
deadlines. In most existing RTDBs, soft or firm deadlines are supported by modifying conventional
database protocols to provide preferential treatment to high-priority transactions. In such systems,
best-effort scheduling protocols are employed to minimize the number of transactions that miss their
deadlines. In many military applications, however, certain critical transactions must be guaranteed to
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satisfy hard real-time constraints. For example, in an air defense system designed to neutralize enemy
ballistic missiles, database updates may be triggered to track and identify potential threats and to
issue appropriate counterstrikes; such updates must complete by their deadlines. Our work on RTDBs
has focused on hard-deadline uniprocessor and multiprocessor systems. Our approach is to implement
such transactions using highly-optimized lock-free and wait-free algorithms that execute at the user
level. Since no underlying system support is needed for transactions, this allows RTDB functionality
to be achieved in embedded applications without complicated protocols for avoiding priority inversion
and deadlock, for supporting mode changes, and for handling transaction abort/recovery.
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